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Axially homogeneous, zero mean flow
buoyancy-driven turbulence in a vertical pipe
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We report an experimental study of a new type of turbulent flow that is driven purely
by buoyancy. The flow is due to an unstable density difference, created using brine
and water, across the ends of a long (length/diameter= 9) vertical pipe. The Schmidt
number Sc is 670, and the Rayleigh number (Ra) based on the density gradient
and diameter is about 108. Under these conditions the convection is turbulent, and
the time-averaged velocity at any point is ‘zero’. The Reynolds number based on
the Taylor microscale, Reλ, is about 65. The pipe is long enough for there to be an
axially homogeneous region, with a linear density gradient, about 6–7 diameters long
in the midlength of the pipe. In the absence of a mean flow and, therefore, mean
shear, turbulence is sustained just by buoyancy. The flow can be thus considered
to be an axially homogeneous turbulent natural convection driven by a constant
(unstable) density gradient. We characterize the flow using flow visualization and
particle image velocimetry (PIV). Measurements show that the mean velocities and
the Reynolds shear stresses are zero across the cross-section; the root mean squared
(r.m.s.) of the vertical velocity is larger than those of the lateral velocities (by about
one and half times at the pipe axis). We identify some features of the turbulent flow
using velocity correlation maps and the probability density functions of velocities
and velocity differences. The flow away from the wall, affected mainly by buoyancy,
consists of vertically moving fluid masses continually colliding and interacting, while
the flow near the wall appears similar to that in wall-bound shear-free turbulence. The
turbulence is anisotropic, with the anisotropy increasing to large values as the wall is
approached. A mixing length model with the diameter of the pipe as the length scale
predicts well the scalings for velocity fluctuations and the flux. This model implies
that the Nusselt number would scale as Ra1/2Sc1/2, and the Reynolds number would
scale as Ra1/2Sc−1/2. The velocity and the flux measurements appear to be consistent
with the Ra1/2 scaling, although it must be pointed out that the Rayleigh number
range was less than 10. The Schmidt number was not varied to check the Sc scaling.
The fluxes and the Reynolds numbers obtained in the present configuration are much
higher compared to what would be obtained in Rayleigh–Bénard (R–B) convection
for similar density differences.

† Email address for correspondence: jaywant@mecheng.iisc.ernet.in
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Figure 1. Flow schematic. The flow is caused by the density difference (ρT − ρB ; ρT > ρB )
across the pipe. The tanks have uniformly mixed fluids; there is a developing region near the
pipe entrance at each end (Le , with a density drop of Δρe), and the density variation in the
axially homogeneous midsection is linear.

1. Introduction
Buoyancy is important in many technologically relevant and naturally occurring

turbulent flows. In most of these flows, e.g. a plume, both mean shear and density
difference are important; turbulence is produced by the interaction of mean shear
and the Reynolds shear stresses, and the stratification may aid or impede turbulence
production. In this paper we propose and experimentally study a new type of turbulent
flow that is purely buoyancy-driven and also homogeneous in the vertical direction.

The flow is created by an unstable density difference across the ends of a long
vertical pipe (whose length to diameter ratio L/d is 9; figure 1). We use brine and
fresh water for creating the density difference. Mass conservation implies that at any
instant of time the net flow is zero at ‘any’ cross-section of the pipe. Moreover, at high
enough Rayleigh numbers, when the flow is turbulent, our experiments show that the
time-averaged velocity at any point is zero – with zero mean flow; only fluctuating
velocities are present. Since the pipe length-to-diameter ratio is large, the flow away
from the ends is ‘axially homogeneous’ with a linear density gradient.

Thus we have an axially homogeneous turbulent flow with zero mean velocity
that is sustained purely by buoyancy. The present work is initiated to obtain
a better understanding of buoyancy effects in turbulence by studying it in the
absence of shear. The non-dimensional parameters of the flow are the Rayleigh
number Ra = g(1/ρ0Δρ/L)d4/να, the Schmidt number Sc = ν/α and the aspect ratio
AR = L/d . Here Δρ is the density difference across the ends of the pipe; ν is
the kinematic viscosity; and α is the diffusivity of the species creating the density
difference. The Rayleigh number is based on the mean density gradient Δρ/L, and
the pipe diameter d . A more appropriate Rayleigh number Rag = g(1/ρ0dρ/dz)d4/να

in the homogeneous region is based on the local density gradient, ∂ρ/∂z. In our
experiments, the Taylor microscale Reynolds number Reλ is estimated to range from
about 45 to 65 (§ 5.1); see table 1. We note that convection driven by a temperature
difference instead of a concentration difference would be similar, except the diffusivity
of the active scalar would be larger (Prandtl number Pr replacing Sc), but the wall
conduction of heat will be an additional parameter.

With a view towards understanding some aspects of ventilation Epstein (1988)
experimentally studied the buoyancy-driven exchange (countercurrent) flow through
single or multiple openings (both square and circular) in horizontal partitions, using
brine above the partition and fresh water below the partition. The openings were
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Time Δρ/ρ 〈wrms〉A dLL(1/2)
ww / 〈f lux〉A η λ Nug Rag Reλ Re

(min) (mm s−1) 〈wrms〉A (s) (m2 s−3) (mm) (mm)

5 0.0081 10.90 1.33 5.06 × 10−6 0.38 5.99 4.16 × 105 3.34 × 108 65.3 545
10 0.0065 9.73 1.49 3.59 × 10−6 0.41 6.34 3.72 × 105 2.66 × 108 61.7 486
20 0.0044 8.03 1.81 2.02 × 10−6 0.47 6.98 3.07 × 105 1.81 × 108 56.1 402
30 0.0032 6.80 2.13 1.23 × 10−6 0.54 7.59 2.60 × 105 1.30 × 108 51.6 340
40 0.0024 5.91 2.45 0.81 × 10−6 0.60 8.14 2.26 × 105 0.98 × 108 48.1 295
50 0.0018 5.16 2.81 0.54 × 10−6 0.65 8.7 1.97 × 105 0.75 × 108 45.0 258

Table 1. Experimental parameters at various times during the experiments; 〈wrms〉A is the
average over the measurement area of wrms , 8.6% more than the value at the axis (see
figures 4 and 8); dLL(1/2)

ww /〈wrms〉A is an eddy turnover time; LL(1/2)
ww is from table 2; f lux

is from (3.3); ε = g × 〈f lux〉A; and η and λ follow from ε(see § 5.1). Reλ = 〈wrms〉Aλ/ν, and
Re = 〈wrms〉Ad/ν.

essentially pipes projecting into the enclosures. The L/d ratios of the pipes were in
the range 0.01–10. Four different flow regimes were identified as L/d was increased
through this range – an oscillatory regime, a counterflow regime and at the largest
L/d ratios, a turbulent regime. The third regime was identified where both turbulent
diffusion and counterflow took place in different regions in the pipe. At high L/d

ratios the flow could be modelled as turbulent diffusion (after Gardener 1977). It
was found that the exchange flow rate was independent of viscosity for all practical
purposes, and a universal correlation between L/d and the non-dimensional flux
could be proposed.

Arakeri et al. (2000) reported preliminary results of the flow under consideration.
There the focus was on understanding the nature of the flow. In the experimental
study, using flow visualization, they identified various regimes as functions of Rayleigh
number. At low Rayleigh numbers the flow is laminar, consisting of two streams with
each occupying one half of the cross-section (which is referred to as ‘half-and-half’
flow); the lighter stream flows up, and the other, the heavier one, flows down, with
the line demarcating the two fluids being the diameter of the pipe. As the Rayleigh
number is increased, a helical structure is observed, with the up- and down-flowing
fluids now forming a double helix. At still higher Rayleigh numbers the flow becomes
unsteady but remains laminar. Finally, beyond about Rag = 107, the flow is seen to
be turbulent with a range of scales. They measured the average salt concentration
in the top tank as a function of time and related the rate of change of the average
concentration to the average flux of the salt in the pipe. For the turbulent flow,
they proposed a mixing length model with the length scale as the diameter of the
pipe. In the turbulent case, the measured flux scaled like Δρ3/2 as predicted by the
model, which is equivalent to Nu ∼ Ra1/2Sc1/2. Using scaling arguments, Cholemari
& Arakeri (2005) have developed relations for flux, including the end effects. The
non-dimensional flux is given by Nu =Cr(AR)Ra1/2Sc1/2. Data from Epstein (1988),
Cholemari (2004) and Arakeri et al. (2000) are used to determine Cr . The end
effects are restricted to about a diameter at each end, i.e, Le ∼ d (figure 1), unlike
in fully developed pressure-driven pipe flow, where the entrance length is several
diameters.

Debacq et al. (2001) and Debacq, Hulin & Salin (2003) have reported buoyancy-
induced mixing in a long vertical pipe. The experiments consisted of a heavier fluid
lying over a lighter fluid in the pipe, which were subsequently allowed to mix.
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The mixing process is characterized by the Atwood number At = (ρ2 − ρ1)/(ρ2 + ρ1)
with ρ1 and ρ2 being the densities of the light and heavy fluids. For At > 10−4 the
normalized concentration profiles averaged over the pipe section were seen to be self-
similar, allowing the characterization of the phenomenon by a macroscopic diffusion
coefficient. The spreading of the front was like t1/2. In Debacq et al. (2003), the
variation of the properties of the flow with the Atwood number (At = 10−5 − 2), fluid
viscosity (ν = 1 − 16 × 10−6 m2 s−1) and the pipe diameter (2–24 mm) are studied.
An unexpected increase in the diffusivity and characteristic velocity of the random
fluid motions results when ν is increased. This results from the coarser mixing of the
more viscous fluids, which increases the local density contrasts and thus the buoyancy
forces. Although the works of Debacq et al. (2001, 2003) and the present work share
some common features, there is one fundamental difference. We have an axially
homogeneous flow that can be considered quasi-steady, while the flows considered in
the studies of Debacq et al. are spatially varying and unsteady, more akin to those
found in Rayleigh–Taylor instability experiments.

As in the present flow, in Rayleigh–Bénard (R–B) convection, in the bulk, most of
the turbulent kinetic energy is produced by buoyancy; the flow is homogeneous (if the
convection cell is wide enough and if the mean flow is absent) in the horizontal plane.
However, the bottom and top walls play a dominant part in determining the flow
(e.g. Siggia 1994; Theerthan & Arakeri 1998, 2000; Stringano & Verzicco 2006), and
hence the scaling for the flux could be different in the two cases. In R–B convection, a
number of studies (Constantin & Doering 1999; Niemela et al. 2001; Amati et al. 2005;
Nikolaenko et al. 2005; Doering, Otto & Reznikoff 2006; Niemela & Sreenivasan
2006, to cite just a few) suggest a Nu ∼ Ra1/3 scaling, although Nu ∼ Ra1/2 scaling is
predicted in R–B convection at very high Ra (Kraichnan (1962). In particular, the
works of Constantin & Doering (1999) and Doering et al. (2006) predict a rigorous
upper binding to the exponent at 1/3, albeit with a logarithmic correction, when
the Prandtl number is infinite. The numerical investigations by Amati et al. (2005)
(AR = 2) and the experimental investigations by Nikolaenko et al. (2005) (a range of
L/d up to 3.5) and Niemela & Sreenivasan (2006) (L/d = 4) of R–B convection in
cells with L/d ratios greater than unity also showed a 1/3 scaling of the Rayleigh
number. In Amati et al. (2005), the exponent was close to 1/3 for four decades of
Rayleigh numbers up to 2 × 1014. In Niemela & Sreenivasan (2006) the exponent
saturates close to 1/3 up to 5×1012. A similar saturation of the exponent close to 1/3
occurs for Ra ∼ 1012 in the study of Nikolaenko et al. (2005). In the ongoing work
of Verzicco & Sreenivasan (2008) a simulation is carried out for a tall cylindrical cell
with L/d = 10. The exponent is approximately 0.37 for Ra ∼ 1010 − 1015. However, at
the same time, evidence exists that the appearance of such scaling in R–B convection
is dependent on the behaviour of the boundary layers near the top and bottom plates.
Roche et al. (2001) found such a scaling in R–B convection with rough top and
bottom plates, beyond Rayleigh number Ra = 2 × 1012, while Niemela et al. (2000),
with smooth surfaces, did not find the scaling even at much higher Rayleigh numbers
close to 1017. Roche et al. (2001) argue that this is due to the removing of the Rayleigh
number dependence of the boundary layers because of the surface roughness in their
experiments. In the experiments of Niemela et al. (2000) the near wall dynamics are
shear-dominated. Niemela & Sreenivasan (2003) conclude that, in such cases, the
observed exponent, close to 1/3, is consistent with Kraichnan’s (1662) formula of
Nu ∼ Pr−1/4Ra1/2/[(log Ra)3/2]; the Pr and the logarithmic terms together yield an
effective asymptotic slope of 0.315 over the range of Ra considered. Lohse & Toschi
(2003) also found the Ra1/2 scaling in their simulations of the bulk turbulence only,
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without the bottom and top walls (and therefore without the boundary layers that
are present in R–B convection).

In view of such contradictory evidences, it would be useful to study the bulk and the
boundary layer effects separately. The present work is an attempt in this direction.
The large aspect ratio ensures that any boundary layer effects introduced in the
top and bottom tanks do not affect the turbulence in the central region. Further, the
boundary layers like ones that occur at the horizontal walls in R–B convection cannot
be present in the present experiments. In addition, an important result of the present
work is the educing of the structure of turbulence using velocity field measurements
with particle image velocimetry (PIV).

Numerical experiments of R–B turbulence with periodic boundary conditions are
reported in Calzavarini et al. (2005). They thus exclude the boundary layer effects
by design. They confirm the scalings given in Grossmann & Lohse (2000) for the
bulk of R–B convections. The present measurements and the scalings are shown to
be consistent with their theory, supporting the view that the present flow is similar to
the bulk turbulence in R–B convection.

Recently, Gibert et al. (2006) have reported measurements on convective heat flux
and temperature gradient in a vertical channel of aspect ratio 2 (L/b, i.e. channel
height to width) filled with water. The data are scaled by a natural length scale Ln,
which is based on the mean vertical temperature gradient and the magnitude of the
temperature fluctuations. The Nusselt number scales like Nu ∼

√
RanP r , with the

Rayleigh number Ran based on Ln which itself has a logarithmic dependence on Ren,
Ln ∼ log Ren. The present configuration has a much larger aspect ratio of 9, thus
ensuring a fully developed turbulent flow at the central region. We feel that the small
aspect ratio of the apparatus of Gibert et al. (2006) could cause the characteristics of
turbulence be affected by the flow outside the channel, as will be discussed in § 5.3.

As mentioned above, the absence of a mean flow implies that mean shear is
zero. Thus, flow near the wall is shear-free wall-bound turbulence. There have been
various studies on shear-free turbulence near a solid wall: Uzkan & Reynolds (1967),
Thomas & Hancock (1977), Hunt & Graham (1978), Perot & Moin (1995) and
Aronson, Johansson & Löfdahl (1997). In such studies a solid surface is suddenly
introduced in homogeneous isotropic turbulence. In the absence of a mean shear,
as there is no production, the turbulence decays with time. In the present flow also,
the mean shear near the walls (and elsewhere) is zero but with the crucial difference
that the turbulence, sustained by buoyancy, is non-decaying. Perot & Moin (1995)
studied the decaying turbulence numerically, near an idealized permeable wall, an
idealized free surface and a solid wall. In particular they elucidated the role of the
pressure–strain correlation near the walls: these transport energy towards the wall
when the structures near the wall, called splats and anti-splats in the literature, acquire
an imbalance due to viscous effects. They also showed that the spatial extent of wall
normal stresses scales with an integral scale, but variation of the tangential stresses is
limited to a region that scales with a viscous length scale. Aronson & Löfdahl (1997)
experimentally verified the scaling of the spatial extents of the flow near a moving
belt. They also showed that the near wall peaks in the measured tangential stresses
in Thomas & Hancock (1977) were spurious, thus showing that their results were
consistent with those of Perot & Moin (1995), Hunt & Graham (1978) and Uzkan
& Reynolds (1967). We will show that the present flow near the walls has some
similarities with the shear-free wall-bound turbulence studies, but there are also some
differences because of buoyancy. Also, we propose that this flow may be a good way
to study non-decaying shear-free turbulence near a wall.
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Figure 2. Schematic of the experimental setup. Two tanks on either side of a vertical pipe
with brine in the top tank and water in the bottom tank create an unstable density gradient
which drives the flow. Fluid within each tank is well mixed to provide unambiguous boundary
conditions to the pipe. See text for the notation and additional details.

The rest of the paper is organized as follows: We describe the experiments and
the diagnostics, confirm the flow is axially homogeneous and give the scalings for the
velocities and the fluxes through a model in § 2 . In § 4 we present the characteristics
of turbulence through visualizations and velocity statistics. We report the large-scale
structure of the flow and indicate the mechanisms of transfer of buoyant energy to
turbulence. We discuss the near wall behaviour of the present flow and compare it
with that in shear-free wall-bound flows. In discussing these results in § 5, we describe
the modes of energy production and transport and discuss the flow in relation to
other buoyant flows. Preliminary results of the present study are reported in Arakeri
& Cholemari (2002).

2. Experiments
The experimental setup, shown schematically in figure 2, consists of a vertical glass

pipe connecting two tanks. The top tank (TT) was open at the top, while the bottom
tank (BT) was closed on all sides. The bottom tank was 20 cm × 20 cm in cross-
section and 8 cm high, while the top tank measured 20 cm × 20 cm × 20 cm. The
tanks were made of glass and perspex. Length of the glass pipe was 450 mm, and
its diameter was 50 mm. The tanks were attached at the ends of the pipe by rubber
stoppers (R) with holes drilled through them to accommodate the pipe. The ends of
the pipe were flush with the tank walls. This design was modular and allowed for
different lengths and diameters of the pipes to be accommodated.

Small aquarium water pumps (P) were used to continuously mix the fluids and
thus prevent stratification in each tank. The uniformly mixed conditions in the tanks
ensured known and unambiguous boundary conditions at the pipe ends. The locations
of the two exits (through perforated pipes PP) and the two inlets of the pumps were
arranged along opposite diagonals of the tank, well away from the pipe exit. In
addition, the flow rates in the pumps of about 8 litres per minute were small enough,
so as to minimize the disturbance levels near the pipe ends. For clarity only part of
the mixing circuit is shown in the figure.
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To minimize effects of refraction, all the visualizations and PIV measurements are
done through a square glass tank (VT) filled with water and enclosing the pipe. The
side of this tank nearest to the camera is perpendicular to the mean line of sight and
parallel to the laser sheet.

The general procedure in the experiments was as follows: The brine was prepared
using common salt (NaCl) weighed using a balance with the least count of 1 mg. We
filled the bottom tank and the pipe with distilled water. After sealing the top opening
of the pipe with a stopper, we filled the top tank with brine whose volume equalled
the total volume of water in the pipe and the bottom tank. For PIV measurements,
both the brine and the distilled water were seeded with particles (hollow glass spheres
from Potters Industries Inc., 110P8, with a mean diameter of 11 μm and mean density
1.1 g cc−1). We ensured that there were no air bubbles in the pipes leading to the
pumps or anywhere else in the setup. A plumb line was used to ensure that the pipe
was vertical.

Each experiment was started by removing the stopper. Typically, the initial salt
concentration in the top tank was 0.01 g cc−1. About 5 min were required for the
initial transients to die out and the flow to be established. The salt concentration in
the top tank reduced with time and that in the bottom tank increased with time. At
the end of the experiment the densities of the fluids in the two tanks were nearly
equal. The experiments typically lasted about 3 hours, but we consider the data till
about 50 min after the start of the experiment, when the flow was well within the
turbulent regime.

We measured the salt concentration in the top tank using a conductivity probe
(ORION SENSORLINK, model PCM100). The accuracy of measurement was better
than 13 mg l−1. We acquired the data averaged over every 40 s. Knowing the time
rate of variation of the salt concentration in the top tank and using an integral
mass balance, we can calculate the concentration difference and the flux of the salt
as functions of time. Note that, from continuity considerations and incompressibility
assumption, at any instant of time the axial velocity averaged over the cross-section
of the pipe ∫

A

w̃dA = 0, (2.1)

where w̃ is the velocity in the vertically upward and z the direction; see figure 1
for the coordinate system notation. The tilde represents the total velocity (mean +
fluctuating). This relation holds for both laminar and turbulent flows; for turbulent
flows, as we shall see below, the time-averaged velocity at any point is also zero.

In the following, we denote the top and bottom tank concentrations by CT and
CB respectively. VT , VB and VP refer to the volumes of the top and bottom tanks
and the pipe, respectively; AP is the cross-sectional area of the pipe; MS is the total
mass of the salt in the setup; and F is the flux of salt through the pipe. From mass
conservation of salt we have

CB(t) =
MS − CT (t)(VT + VP /2)

VP /2 + VB

, (2.2)

ΔC(t) = CT − CB =
CT (t)(VT + VB + VP ) − MS

VP /2 + VB

, (2.3)

〈F 〉AAP = ρ0VT dCT /dt. (2.4)

Thus from the measurement of top tank concentration with time, we can determine
the instantaneous concentration difference between the top tank and the bottom tank
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fluids as well as the area-averaged salt flux 〈F 〉A. Salt concentration is related to
density by

∂ρ

∂C
= ρ0β, (2.5)

where ρ0 is the density of water, and β ≈ 0.7 for the salt concentration range
encountered in the experiments. Thus, the density difference between the top and
the bottom tanks is

Δρ = ρ0βΔC. (2.6)

We obtained velocity statistics in a plane passing through the pipe axis using PIV.
The measurement area was 50 mm × 50 mm and approximately halfway along the
pipe. The images were obtained with an interline transfer CCD PIV camera (IDT
Technologies) set to 10242 px resolution, at 8 bits, and using an 120 mJ Nd-YaG
pulsed laser (Quantel Big Sky Laser). The interrogation windows had a size of 322 px,
and the spatial resolution was 1.6 mm (0.8 mm with 50% overlapping windows). The
Kolmogorov length scale η is estimated in § 5.1 as 0.4 mm or larger, with an average
of approximately 0.5 mm (see table 1). Hence the spatial resolution was 4η or better.
We estimate the r.m.s. errors to be better than 0.3 mm s−1 or less. Two hundred and
twenty data sets consisting of 250 frames, each recorded a second apart, from 19
different experiments were obtained. The duration of each data set corresponds to
about 125 eddy turnover times. (A mean value of 2 s is taken for the eddy turnover
time; see table 1.) Each frame had 632 vectors. In all the cases, the particle image
diameter was close to 2 px, which is recommended to minimize the overall error of
uncertainty (Raffel, Willert & Kompenhans 1998; Prasad 2000). The details of the
image evaluation and error analysis are in Appendix A.

2.1. Axial homogeneity

Since the pipe is long, the flow is expected to be axially homogeneous or fully
developed away from the ends of the pipe, with the statistics of the flow, and in
particular the various averages, having no dependence on z, the axial coordinate. An
analogous axially homogeneous situation is obtained in a fully developed pressure-
driven pipe flow, where the flow is driven by a linear pressure gradient. In the present
case, the convection is driven by a linear density gradient; the detailed arguments for
the existence of a linear density profile are given in Appendix B. We measured the
average concentration profile along the length of the pipe, by means of an absorption
technique. Figure 3 shows that the concentration variation is fairly linear in the range
measured, i.e. about two diameters from either end. Due to experimental constraints
we could not measure the concentration profiles till the ends of the pipe. However, in
the present flow, the developmental region at either end is short, about one diameter,
much smaller compared to the case of pressure-driven pipe flow (Cholemari & Arakeri
2005).

3. Scaling
For a long enough pipe (L/d � 1), away from the two ends the flow must be

homogeneous in the axial direction with a linear density gradient. Also, the local
large length scale for a long enough pipe is the pipe’s diameter. We present further
evidence of this in § 4.3. The mixing length model (Arakeri et al. 2000) is based on
the dominance of the pipe diameter as the single length scale (also see § 4.3.1). In
the fully developed region, the only relevant parameters are the pipe diameter d , the
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Figure 3. Mean concentration gradient measured using absorption (pipe AR = 10). Data
averaged for about 2 min. The decrease of the gradient with time is seen. The straight line is
drawn for comparison.

axial gradient of the mean density dρ/dz, g, ν and α. The two molecular diffusivities
are not expected to be relevant for the scalings of the energy containing scales. Then
dimensional analysis gives d as the length scale and the scales for density fluctuations
(ρ ′), velocity fluctuations (w′) and buoyancy flux ρm, wm and Fm/ρ0 respectively as
(with β being defined by βρ0ΔC = Δρ)

ρ ′ ∼ (dρ/dz)d = ρm, (3.1)

w′ ∼
√

g(dρ/dz)d2 = wm, (3.2)

〈f lux〉A = β〈〈wc〉〉A ∼ wmρm

ρ0

∼ Fm

ρ0

. (3.3)

Physically these relations imply that a fluid particle (a coherent region of fluid) heavier
than the surrounding fluid by an amount ρ ′ attains a ‘free fall’ velocity wm as it falls
through the mixing length 
 d , before it interacts and mixes. The implicit assumption
is that the flow becomes decorrelated over distances scaling with d . Over a height
of one diameter ρ ′ scales with the mean density. Alternatively, if density fluctuations
and the density gradient is known, a length scale can be derived as ρ ′/(dρ/dz).

The mixing length scalings for velocity are tested in figure 4. PIV data are
compared with the mixing length velocity scaling obtained from the salt concentration
measurements. The r.m.s. velocities measured on the pipe axis are considered. From
salt concentration measurements (2.3), ΔC is evaluated, and then (3.2) and (3.6) are
used to evaluate wm. The fit is good till about 50 min from the start of the experiment,
confirming the validity of the scalings for the Rayleigh numbers considered. The
scalings, with different constants, work well almost right up to the wall.

These scalings imply that, the Nusselt number Nug = − 〈f lux〉A/(αβdC/dz), a
non-dimensional measure of the flux (where α is the diffusivity of the salt), scales like

Nug = CmRa1/2
g Sc1/2, (3.4)

where Cm = 0.88 is the proportionality constant in (3.3), i.e. 〈f lux〉A = CmFm/ρ0, and
is independent of the geometry (Cholemari & Arakeri 2005). The mean concentration
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gradient is denoted by dC/dz. The Reynolds number 〈wrms〉Ad/ν scales as

Re = K1Ra1/2
g Sc−1/2, (3.5)

where K1 = 〈wrms〉A/wm and equals 0.78; 〈wrms〉A is the area average of wrms over the
pipe c s−1. At the pipe axis itself, wrms/wm = 0.72 (see figure 4). These relations are
analogous to the exact relations for R–B convection given in Chandrasekhar (1981)
and Grossmann & Lohse (2000) and can also be derived similarly from integral
balances over a volume for the present flow (Cholemari 2004). The velocity scaling is
verified in figure 4, and the Nusselt number scaling is verified in figure 5. In the range
of Rayleigh numbers available in the present experiment, the measurements support
the scalings. However, we note that measurements over a larger range of Rayleigh
numbers are required to confirm these scalings. Also the Schmidt number needs to
be varied to test its influence as well.
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(a) (b)

Figure 6. Particle streak visualization; Rag ∼ 2.5 × 108. The images are 2 s apart. The images
show the volume 50 mm × 50 mm × 1.4 mm from the middle of the pipe and symmetric
about the pipe axis (vertical in the images). The length of a streak is proportional to the
magnitude of velocity in the plane of the light sheet. Note the persistence of the diagonally
aligned dumb-bell-shaped structure in the two images.

Because of the nonlinear change in density near the ends, dρ/dz �= Δρ/L. Then

dρ

dz
= K

Δρ

L
, (3.6)

where K depends on the aspect ratio AR (K= 1/(1 + 4.2/AR) (Cholemari 2004;
Cholemari & Arakeri 2005). For AR =9 in the present experiments, K= 0.68. The
Nusselt number based on the overall density difference and the Reynolds numbers
scale with the Rayleigh number Ra = (g(Δρ/L)d4)/ρνα in the following manner:

Nu = − 〈f lux〉A

αβΔC/L
= CmK−3/2Ra1/2Sc1/2; (3.7)

Re =
〈wrms〉Ad

ν
= K1K

−1/2Ra1/2Sc−1/2. (3.8)

The prefactors in (3.7) and (3.8) are derived in Cholemari & Arakeri (2005).

4. Characterization of the turbulence
4.1. Visualization

Several important features of the flow were revealed by flow visualizations, some
apparent from the still pictures and some only after viewing the video: there is no
mean flow (figure 6); the flow field appears random and three-dimensional with a
range of scales and a range of velocities (figures 6 and 7a); characteristic of the
turbulent flows, vortical type structures seem to dominate (figures 6 and 7a).

Flow visualization reveals a continuous falling of parcels of heavier fluid and
rising of parcels of lighter fluid; this is the mechanism by which potential energy
is converted to kinetic energy, initially associated with the vertical component of
velocity. Collisions and interactions of the downward and upward moving parcels
result in lateral velocities.

The particle streak images taken 2 s apart (figure 6) show another aspect of this
flow, the persistence of the features for long times at the large scales. For example
the dumb-bell-shaped double vortex approximately aligned at 45◦ to the pipe axis in
figure 6(a) is still identifiable in figure 6(b), although many changes have taken place
at the smaller scales. Two seconds corresponds to approximately one and half eddy
turnover times at this Rayleigh number.
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(a) (b) (c)

Figure 7. (a) Dye visualization; Rag 
 1×108. The image corresponds to the volume 50 mm ×
67 mm × 1.4 mm from the middle of the pipe, symmetric about the pipe axis (vertical in the
image). The image shows a range of scales, the largest being comparable to the pipe diameter,
and a range of concentrations – made apparent by the large variation in the brightness. The
buoyancy forcing is random and over a range of scales. (b), (c) Shadowgraphs at Rag ∼ 4×108

and Rag ∼ 1×108. The same length of pipe as in (a) is shown. The flow appears random. Note
the decrease in the contrast due to the weaker density fluctuations in (c).

In figure 7(a), a small amount of sodium fluorescein dye mixed in the top tank
fluid at the beginning of the visualization subsequently ‘tags’ the denser top tank
fluid. The regions of higher concentrations of dye appear brighter. Apart from the
diffusive effects at the small scales, the dye concentration is proportional to the salt
concentration and hence is directly related to the buoyancy force which is responsible
for sustaining the turbulence. Clearly the forcing is random and occurs over a range of
scales. The up- and down-moving fluids often collide, creating local shears, instabilities
and mixing.

In the shadowgraphs (figures 7b and 7c), the flow structure appears random with
no preferred orientation. During the early stages of the experiment, the structure
appears granular, while at the later stages, the contrast, due to the reduced density
fluctuations, is lower, and the structure is more like randomly interwoven filaments.
The fine-grained structure seen in the shadowgraphs is slightly misleading, since the
shadowgraph is an integrated effect of light refractions through the test section; the
fine-scale structures are not as closely spaced as they appear. The integrating effect
of the shadowgraphs averages out lateral variations (which are clearly present in
figures 6 and 7a) and helps show the absence of axial variation, as expected from
axial homogeneity.

The absence of a mean flow appears to be a robust characteristic of the flow; we
could not induce the flow to prefer a half–half configuration even when the pipe was
tilted by a relatively large angle of about 5◦ to the vertical. The flow near (about one
diameter) the pipe ends is quite different from that in the middle. The average flow
across the cross-section near the pipe ends is again zero, but the counterflows are well
defined. The flow into the tank (top or bottom) is in the form of a jet and into the
pipe is like a sink flow drawing fluid from everywhere in the tank.

4.2. The mean characteristics of the flow

The focus of the present study is turbulent convection in the absence of shear.
Buoyancy is the only source of energy for the turbulence because the mean shear
is zero. (The walls do not participate in shear production; the role of the walls in
the flow appears to be similar to that in shear-free flows.) The dynamics of the flow
away from the walls are mainly determined by buoyancy. These flow characteristics
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Figure 8. Profiles of the mean and the RMS velocities across the pipe cross section. Also
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〈wrms〉A.

and other features of the flow are described in this section, mainly through velocity
statistics.

Figure 8 gives the profiles of the mean and r.m.s. velocities. The data is taken after
the initial transients have died out while the convection is turbulent. The velocities are
scaled by the r.m.s. value of the axial velocity averaged over the domain of the PIV

measurement during each 5 min interval. The r.m.s. velocities scale as
√

g(dρ/dz)d2

(see figure 4 and (3.2)).
Mean flow and the turbulent shear stresses are absent; 〈u〉, 〈w〉 and 〈wu〉 are nearly

zero. Only the fluctuating velocities are present, and the r.m.s. velocities are about
two decades larger compared to the mean velocities. The absence of shear stresses
and a mean flow imply that there is no shear production of turbulence. The average
value of the buoyancy production term, calculated from the flux of salt, is about two
orders larger than the average-value shear production.

The average value over the cross-section of the lateral component, urms , is about
half of wrms , the axial component, which has a double peak, whereas urms has a flat
maximum at the axis. The natures of the profiles are determined by a combination of
effects due to buoyancy and the wall. In shear-free flows, the wall normal component
of the velocity is affected to about 1–2 integral length scales, while the axial velocity
profile is affected to a much shorter viscous length scale, scaling like

√
ντ , where

τ = LL(1/2)
ww /wrms . The present flow near the walls shows similar trends, except that

the flow is affected by buoyancy as well. The peaks near the walls in the axial r.m.s.
profile are absent in the studies of shear-free flows. It is a speculation whether these
are due to the nondecaying nature of the turbulence or due to higher buoyancy
production in these regions. Obtaining buoyancy production from the simultaneous
measurement of the density and velocity would resolve this issue. However, the flow
in the central region is dominated by buoyancy.

Both the presence of the walls and buoyancy cause anisotropy in the present flow.
One of the indicators of anisotropy at the large scales are the ratios of the r.m.s.
velocities in different directions. Figure 9 shows the ratio 〈w2〉/〈u2〉. A broad minimum
of about 2 exists at the centre of the pipe. As the wall is approached, the ratio rises
to very large values that are around 50. The axial velocities diminish due to viscous
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Figure 9. Variation of the large-scale anisotropies of the flow across the pipe cross-section.
Large-scale anisotropy is characterized by the ratio of the mean square velocities 〈w2〉/〈u2〉.

effects as the wall is approached, while the lateral velocities diminish due to kinematic
blocking. As the wall is approached, the reduction in lateral velocity is over a larger
spatial extent (integral scale) compared to the spatial extent over which reduction
in the axial velocity occurs. The difference in these length scales results in the large
anisotropies as the wall is approached (also see figure 8).

We may compare the values of the ratios of the normal stresses obtained in some
buoyancy-driven turbulent flows, with those in the present flow. In R–B convection, in
the bulk, 〈w2〉/〈u2〉 ≈ 1.3 (Fitzjarrald 1976). In a statistically homogeneous turbulence
created by homogeneous random fluctuations of density in an unbound, uniform
fluid with zero mean gradient of density 〈w2〉/〈u2〉 ≈ 2.8 or 2.4, depending on the
initial density profile (Batchelor, Canuto & Chasnov 1991). For the vertical, buoyant
turbulent boundary layer the ratio is about 2 at the location of peak production of
k and about 2.3 midway towards the wall from this location. In the present flow,
〈w2〉/〈u2〉 ≈ 2 near the centre, rising steeply to large values near the walls (figure 9).

The result that the Reynold’s shear stress is zero is also seen in figure 10, which
shows that the scaled joint probability density function (JPDF) is nearly circular
and is symmetric about the ordinate (with u/urms and w/wrms nearly independent
and 〈wu〉/(urmswrms) ≈ 0; Tennekes & Lumley 1972). The entire data, i.e. data for the
duration of the experiment considered and for the full lateral extent, has been taken
to calculate the JPDF.

4.3. Large-scale structure of the flow

Next we present the spatial structure of the flow and estimate the large length and
time scales of the present flow, using velocity correlation functions. In the present
flow, for separations in the axial direction (the homogeneous direction), the spatial
velocity correlation function does not depend on the coordinate but just on the
separation, r . Similarly, temporal correlations calculated over spans of a few minutes
do not depend on time t but only on the temporal separation τ ; the flow may be
assumed to be stationary over the time in which the change in the driving density
difference is negligible. As in case of the velocity profiles, the velocities are scaled by
the average r.m.s. value of the axial velocity during each 5 min interval (a ‘data set’),
before ensemble averaging.



Buoyancy-driven turbulence in a vertical pipe 83

–3 –2 –1 0 1 2 3

–2

–1

0

1

2

3

u/ur.m.s

w
/w

r.
m

.s

0.17

0.15

0.13

0.1

0.08

0.05

0.03
0.03
0.02

0.01

Figure 10. Joint PDF of the velocities, scaled by their r.m.s. values. The symmetry about the
ordinate indicates 〈wu〉 
 0.

4.3.1. Spatial correlation

The velocity spatial correlation is defined as

CS
uiuj

(x0, r, t) =
〈〈ui(x0, t)uj (x0 + r, t)〉

n
〉
t

uir.m.s.(x0, t)ujr.m.s.(x0 + r, t)
. (4.1)

The superscript S indicates a spatial correlation; x0 is the reference point; and r is
the separation vector. The subscripts n and t indicate the average taken over different
data sets and over time in each set respectively. The r.m.s. values are given by

uir.m.s.(x, t) =
(
〈〈ui(x, t)2〉n〉

t

)1/2
. (4.2)

The spatial velocity correlations are shown in figure 11 for three choices of the
reference point, x0 = −22.4 mm, x0 = −12.5 mm and x0 = 0 mm, and with z0 = 0, for
all the three cases. The walls are about 0.8 mm away on either edge of the correlation
maps. The top row shows the lateral velocity maps, while the bottom row shows the
axial velocity maps.

The axial velocity correlation maps are stretched in the vertical direction, with
distinct negative correlation regions on either side. These features suggest that parcels
of fluids moving vertically are elongated in the axial direction; dictated by continuity,
a downward- or upward-moving parcel is accompanied by parcels moving in the
opposite direction on the sides. The correlation maps give a quantitative scale to
the lumps of heavier or lighter fluid moving down or up observed in laser-induced
flourescence (LIF) visualization. With the reference point on the axis of the pipe
(x = 0), the lateral velocity correlation maps are nearly circular in the central region,
with no clear regions of negative correlation.

As the reference point is moved closer to the wall, first to x = −12.5 mm (halfway
between the pipe axis and the wall) and then to x = −22.5 mm, the velocity correlation
maps get increasingly affected by the presence of the wall. At x = −12.5 mm, the
shape of axial velocity correlation maps do not change significantly, but the lateral
velocity maps begin to get squashed near the walls. Close to the wall (x = −22.5 mm)
both the maps exhibit significant changes in their structure. All the axial velocity
correlation maps show distinct negative correlation regions, suggesting counterflow.
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Figure 11. Velocity correlations. The origins are at −22.4, −12.5 and 0 mm from the pipe
axis and at z = 0. Top row: lateral velocity. Bottom row: axial velocity. Full lines correspond
to positive correlation, and dashed lines correspond to negative correlation.

The effect of the wall on the wall normal velocity extends further away from the
wall than in the case of the axial velocity. This is also seen in the decay of the lateral
velocity fluctuations over a larger distance compared to the decay length for the axial
velocity fluctuations (figure 8). As we shall discuss in § 5, in the present flow, the
energy is fed only into the vertical velocity fluctuations by gravity. The energy gets
transferred to the lateral velocity components by the action of the pressure–velocity
correlations, which are isotropic away from the walls. The correlation maps reflect
this difference, with the stretched axial velocity maps and the nearly circular lateral
velocity maps.

In all cases, extent of the correlations, an indication of the large-scale structures, is
comparable to the pipe diameter.

Integral length scales L, for example

LL
uu =

∫ ∞

−∞
CS

uu(x, rx)drx, (4.3)

are usually used to obtain the large scales of turbulence. Since the flow is non-isotropic,
we have four integral scales, longitudinal and transverse, corresponding to the two
velocity components – LL

uu, LT
uu, LL

ww and LT
ww , where the superscripts L and T

represent longitudinal and transverse respectively. The integral length scale defined
above is useful if the correlation goes to zero in the measured area. In the present
flow, with a limitation on the area of measurement, the correlation did not always
go down to zero, and thus, alternately we define correlation lengths to represent the
large scales which are defined as the length at which the correlation function drops
down to a certain value, say 0.5. These we denote LT (1/2)

uu and the like by LL(1/2)
uu .

Figure 12 gives the variation in the lateral direction of the correlation lengths
LL(1/2)

ww and LT (1/2)
uu , normalized with the pipe diameter d . The average is over all data

sets. The correlation length for the axial velocity, LL(1/2)
ww , has a peak at about 6 mm
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LL
ww ,LL(1/2)

ww LT
ww , LT (1/2)

ww LL
uu, LL(1/2)

uu LT
uu, LT (1/2)

uu

Correlation length 0.29 0.14 0.20 0.17
Integral scale 0.33 0.14 0.22 0.19

Table 2. The large scales of turbulence on the pipe axis calculated from the velocity
correlations. The scales are normalized by the pipe diameter.
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Figure 12. Variation of correlation lengths, normalized with the pipe diameter, with lateral
distance; −25 mm corresponds to the wall and the pipe axis is at 0 mm.

( ∼ d/8) from the wall, close to the location at which the peak of the axial velocity
fluctuation also occurs (figure 8). There is a smooth increase in LT (1/2)

uu from near the
wall to the maximum at the centre. The wall appears to act as a guide to the axial
velocity component, increasing the extent of the axial velocity correlation, while the
lateral velocity fluctuations are attenuated by the wall, decreasing the axial extent of
the correlation as the walls are approached. These features are seen in the correlation
maps (figure 11). There is not much variation in the correlation lengths for different
values of Rayleigh number.

Table 2 gives the summary of large scales of the present flow, calculated on the
axis. The large scales are seen to be comparable to the pipe diameter. It is seen
that the longitudinal correlation lengths in the axial direction LL(1/2)

ww is larger by a
factor of about two compared to the other three correlation lengths (LT (1/2)

ww , LL(1/2)
uu

and LT (1/2)
uu ), which are all of similar magnitudes. The integral scales have similar

magnitude as the respective correlation lengths.
The temporal correlations of velocity exhibit persisting correlations over long times,

typically over 10 s (about 5 eddy turnover times) or so. The long-term correlation is
related to the persistence of large structures, as seen in the streak images (figure 6).
The persistence of the temporal correlations at long times implies that the number of
truly independent data sets reduce as time of separation increases. Thus the statistics
at the large scales involving larger velocities would be relatively noisier. The relation
between Eulerian spatial and temporal velocity correlations is further explored in
Cholemari (2004) and Cholemari & Arakeri (2006). Note that the standard Taylor’s
hypothesis, used to relate temporal statistics to spatial statistics, is not valid in the
absence of a mean flow.
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Figure 13. The PDFs of reduced velocity differences, at various separations. Data is

from the mid two-thirds of the pipe cross-section. The stretched exponentials e−α|ζ |β are

indicated by dots. The pipe diameter d ∼ 125η. (a) δx, z/η = 4; dots-(1/0.5747)e−4.1|ζ |1.18

;

(b) δx, z/η = 8; dots-(1/0.9347)e−2.3|ζ |1.18

; (c) δx, z/η = 20; dots-(1/1.9022)e−0.95|ζ |1.36

; (d )

δx, z/η = 40; dots-(1/3.5437)e−0.25|ζ |2 .

4.4. Indications of energy transfer processes and the wall effects

From the correlation maps in § 4.3.1 we have identified one type of fluid motion
to be of elongated masses of fluid moving up or down. The probability density
functions (PDFs) of velocity differences and cross-correlation maps of velocities
indicate another type of fluid motion, consisting of collisions of coherent regions of
fluid. We hypothesize that the main mechanism of energy transfer from the axial to
the lateral direction in the central region is through collision of these fluid masses.
We will also see how the dynamics of the flow in the central region of the pipe differ
with that near the walls.

For making comparisons, we consider the wall-affected region as about a sixth of
the pipe cross-section from the wall (see figures 8 and 9). In this region there is about
80% of the variation in lateral normal stress (〈uu〉) and a larger variation in the axial
normal stress (〈ww〉). Statistics from this region will be compared with those from
the central region.

The PDFs of the reduced velocity differences, e.g. δxu/urms , in the central
region are given in figure 13. Here, δxu = u(x + Δx, z, t) − u(x, z, t) and
urms = 〈〈

√
〈(u(x, z, t))2〉t〉z

〉
x
. For these plots, the averaging for urms and wrms is from

the selected region. The PDFs δxu and δxw are for lateral separations, while the PDFs
δzu and δzw are for axial separations. The separations δz/η (or δx/η) of 4, 8, 20 and
40 (corresponding to 0.032d , 0.064d , 0.16d and 0.32d , respectively) are considered.
Here η is the Kolmogorov length scale, (ν3/ε)1/4, and is estimated by equating the
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δzw = w(z1)–w(z2)
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Figure 14. Schematic of the (a) separation (δzw > 0) and (b) collision (δzw < 0) events,
where δzw = w(z1) − w(z2) with z1 > z2; w is positive upward.

dissipation ε to the production P, which can be calculated from the measured mass
flux of salt. The smallest value of η, about 0.4 mm, occurs at the beginning of the
experiment, and it steadily increases thereafter, due to the reduction in the flux. The
average value during an experiment is about 0.5 mm. However, the separations are
given in terms of the initial value of 0.4 mm. To increase the sample size, homogeneity
in the axial direction and symmetry about the midplane are assumed. Unless otherwise
mentioned, two columns at the desired distance are used to calculate the PDFs for
the x differences; the number of data points is 250 × 220 × 2 × 63. Similarly in the
case of velocity differences in the z direction, two rows at the desired separation and
extending five unit distances either side of the central axis are used to calculate the
PDFs; the number of data points is 250 × 220 × 2 × 11.

In figure 13(a), corresponding to the smallest separation, the PDFs of δzw and δxu

are asymmetrical, the former being markedly so; δzw or δxu < 0 corresponds to fluid
particles approaching each other, and δzw or δxu > 0 corresponds to fluid particles
moving apart. The two ‘cross’ PDFs, δxw and δzu, are (as expected) symmetrical and
nearly equal, and a stretched exponential with unit area can be fitted (dots). In the
present flow Reλ ∼ 45 − 65 is sufficiently high, such that the buoyancy forcing effects
at the large scales are not felt at the small scales, and for some statistics at least,
the flow has universal characteristics at the small scales. Noullez et al. (1997) found
in a turbulent jet, at separations of few η, the PDFs follow stretched exponentials.
As the separation is increased to twice this value (figure 13b), the PDF of δzw

(thick line) separates even more from the rest, which are still approximated by a
stretched exponential. At separation of δ/η =20, (figure 13c), the two ‘cross’ PDFs
have become Gaussian; i.e. the exponent is 2, and with a standard deviation of 1.1;
the asymmetry in the PDF of δzw is even more pronounced, but the asymmetry in the
PDF of δxu has reduced. The asymmetry in the PDF of δzw continues to a separation
of δ/η = 40 ( = 0.32d), (figure 13d ) and then reduces, but the asymmetry in the PDF
of δxu reverses. At this separation, the two lateral PDFs follow a Gaussian curve with
a standard deviation of

√
2, (1/

√
4π)e−ζ 2/4 as is expected at large separations (Noullez

et al. 1997). As the separation is increased beyond the respective correlation regions
(see figure 11 and table 2) first the PDF of δxu and then δzw approach the Gaussian
distribution.

The remarkable feature of the PDFs of the velocity differences is the pronounced
asymmetry of the PDFs for δzw and to a lesser extent for δxu. To understand these
asymmetries, figure 14 schematically shows the interaction of two fluid particles, along
the z-axis, for example, located at z1 and z2, Δz apart. When δzw < 0, the relative
motion between particles is towards each other, (figure 14), while δzw > 0 indicates
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Figure 15. Cross correlation maps near the wall, 〈u(x0, z0)w(x, z)〉/urms(x0, z0)wrms(x, z). In
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wall, are considered; while in (c) data correspond to u(x0, z0) towards right. Forty-one per cent
of the events contribute to (b), while 59% contribute to (c).

a relative motion away from each other (figure 14b). The asymmetry in the PDFs
of δzw indicates that δzw < 0 occurs more frequently than δzw > 0. It is also seen in
figure 13 that the largest relative velocities are obtained for the δzw < 0 (collision)
events than the δzw > 0 (separation) events. This asymmetry is because of the fluid
particles continually approaching and colliding with each other. This also explains the
reversing of the asymmetry PDF of δxu at larger separations; collisions of vertically
moving fluid parcels in the central region will squeeze the fluid laterally, and there
is relative separation in the lateral direction at large distances. But at smaller δx ,
collision events take place. However, the number of δxu collision events is smaller
when compared with δzw collision events, as seen by the smaller asymmetry in the
PDFs of δxu. The considerable reduction in the asymmetry in the PDF of δzw (not
shown) beyond the separation of δ/η = 60( 
 0.5d) indicates the size of the particles
involved in the collisions: somewhat more than half the pipe diameter (d 
 125η or
less).

To summarize the observations with respect to the central zone, the PDFs of the
velocities, in particular, the asymmetry in those of δzw indicate collisions of vertically
moving fluid particles. Correlation maps suggest elongated regions, scaling with
the pipe diameter, of up- and down-moving fluids, creating a local counterflow on
the sides. We suggest that the collisions of vertically moving fluid parcels, indicated
by the asymmetry of the PDFs of velocity differences, is the mechanism of energy
transfer from vertical to lateral directions.

4.4.1. Wall effects

The kinematic blocking affects the wall normal velocity component, and its effect
is felt over an integral length scale. In contrast, viscous effects affect the tangential
velocity near the wall. To understand the near wall flow, we look at the cross-
correlation maps with the reference point near the wall. Consider the cross-correlation
maps near the wall (figure 15), with the origin at 2.3 mm from the left wall. In
figure 15(a) all data are considered, while figure 15(b) corresponds to cases in which
the fluid at the reference location moves left (towards the wall), and in figure 15(c) the
fluid at the reference point moves right (away from the wall), i.e. u(x0, z0), negative
or positive. A motion towards the wall (a splat event) is associated with flow away
from the point of impingement along the wall. The lateral velocity correlation maps
near the wall (x0 = −22.4 mm), as seen in figure 11, where the presence of two
negatively correlated regions indicates flow away from the wall some z distance away
from the reference point. For motion away from the wall (an anti-splat event) the
flow picture would be similar except that all the flow directions would be reversed.
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Figure 16. The PDFs of the velocities: (a) data only from the middle third of the pipe; (b)
data from near the left wall of the pipe, covering a span of d/6. The reference Gaussian curve,

(1/
√

2π)e−ζ 2/2, is indicated by dots.

Cross-correlation maps in the central region have a diagonal symmetry, suggesting
displacement ahead and behind moving fluid parcels.

Although the correlation maps in the three cases are roughly similar, the number
of events contributing to the left (towards the wall) or right (away from the wall) are
41% and 59% respectively. Idealizing the anti-splat event to occur axisymmetrically
about the location of the splat event, we would observe the anti-splat at two locations
in the plane of the laser sheet, for every splat event. Hence, near a wall, the condition
on u would divide the data approximately in the ratio 1:2, the majority being away
from the wall. The magnitude of the correlation is correspondingly less in figure 15(c)
when compared to figure 15(b). In case of the displacement events in the central zone,
the ratio is close to 1:1. The ratio gradually decreases from close to 2:1 near the wall
to 1:1 at the axis.

The wall influences the PDFs of velocities and velocity differences. Figure 16(a)
shows the PDFs of lateral and axial velocities, normalized with their respective r.m.s.
velocities, for example

√
〈(u(x, z, t))2〉t . The data is taken from the middle third of the

pipe. A reference Gaussian curve with unit variance is shown by dots in the figure.
Noullez et al. (1997) found a similar behaviour for spatially resolved measurements
in a turbulent round jet (Reλ ≈ 360 − 600). However, when the data from near the
wall, covering a distance of d/6, are considered, because of the kinematic blocking
effects, the tails of the PDFs of the lateral velocity depart sharply from the Gaussian
(figure 16b). The asymmetry in the PDF is due to the difference in the wall-
approaching and wall-leaving fluids. The PDFs of the axial velocity in this wall
region, however, still remain Gaussian.

Figure 17 shows the PDFs of velocity differences in the lateral and axial directions
at a separation δ/η = 8 from regions close to the wall. Figure 17(a) is for lateral
separations, at a mean distance of 2.3 mm ( 
 12η, = 3/64d) from the wall. The
wall normal component has a slightly asymmetrical PDF, while the axial PDF is
symmetrical (as expected) and narrower. Figure 17(b) is for axial separations, at
a mean distance of 2.3 mm ( 
 12η, = 3/64d) from the wall. The axial velocity
PDF shows no marked asymmetry, indicating the collision and separation events
are equally likely. Further, the wall normal component shows relatively stronger
differences when compared to those of wall tangential component, as might be
expected from the kinematic blocking effects of the wall. In figure 17(c), at a distance
of 7.8 mm ( 
 40η, = 10/64d) from the wall, the PDFs of δzw have begun to become
asymmetrical, indicating the beginning of regions in which buoyancy is important. A
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Figure 17. The PDFs of velocity differences from near the wall: (a) and (b) are for a
mean distance of 2.3 mm from the wall, while (c) is for a mean distance of 8 mm
from the wall. Compare with figure 13(b). The wall normal component shows significant
deviations. The PDF of δzw is symmetrical in (b) but begins to become asymmetrical in
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Figure 18. Schematic of the phenomenology of processes occurring in the flow. The flow
consists of two distinct regions: a central region in which most of buoyant energy is converted
into kinetic energy in the axial direction and subsequently to energy in the horizontal directions,
mainly through collisions of fluid particles, and a near wall region similar to that in shear-free
wall-bound turbulent flows.

further difference is in the PDFs of δzu: these show large deviations from the stretched
exponential in figure 17(b), while in figure 17(c) these are quite close to the stretched
exponential; the kinematic wall-blocking effects on the wall normal component have
reduced. In the central region, (figure 13b) a stretched exponential fits the PDFs of
δzu quite well. The data points 250 × 220 × 2 × 5 were used to calculate the PDFs in
figures 17(b) and 17(c).

From the cross-correlation maps of the velocities and the PDFs of velocity
differences, we infer the presence of two distinct regions in the flow: a near wall
region similar to that in shear-free wall-bound flows and a central region in which
most of the buoyant energy is converted to energy in the vertical direction and
collisions of fluid particles subsequently produce lateral motions. In some region
near the wall kinematic-blocking effects of both the wall and buoyancy are present.
Figure 18 summarizes the main processes and interactions.
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As in the earlier studies of shear-free turbulent flows (Perot & Moin 1995; Aronson
& Löfdahl 1997), the wall normal Reynolds stress is affected to an integral length
scale ( ∼ d), whereas for the wall tangential Reynolds stresses the relevant length scale
is a viscous length scale

√
ντ , where τ = LL(1/2)

ww /〈wrms〉A is the eddy turnover time
(table 1).

The wall normal component has no significant variation beyond about 15 mm
( ∼ d/3) from the wall, which is about LL(1/2)

ww ; in case of shear-free wall-bound flows
it is about twice the integral scale. In case of wall tangential velocity, since τ has a
mean value of about 2 s for the first 50 min of the experiment, the viscous length
scale turns out to be 1.4 mm, while from figure 8, the region till the peak in the
wrms profile appears to be about 7.5 mm, about 5.3

√
ντ . This can be compared with

the value of about 4
√

ντ in the study of Perot & Moin (1995), although there is
a small dependence on the Reynolds number. The main difference in the present
flow as compared to shear-free wall-bound flows is that of the buoyant energy being
converted into lateral fluctuations in regions away from the wall through collisions
of axially moving fluid particles.

5. Discussion
The vertical acceleration of the fluid due to buoyancy and the collisions which

produce the lateral components are the main features of the energy transfer processes
in the present flow. We now look at some of these in more detail and, in this context,
compare some other turbulent flows with the present flow.

5.1. Energetics

Stationarity, axial homogeneity and absence of mean flow and mean shear
considerably simplify the equations governing the convection. The advection terms in
the equation for kinetic energy k = uiui/2, (D/Dt)k, are zero in the present problem.
The shear production of turbulence 〈uiuj 〉∂iUj is absent, as the shear stresses 〈uiuj 〉
as well as the mean shear ∂iUj are zero. The production is just because of buoyancy.
The turbulent kinetic energy balance (e.g. Pope (2000) becomes

∂iTi = P − ε, (5.1)

where ∂iTi denotes the turbulent transport terms; P = − giβ〈uic〉 = −gβ〈wc〉 is the
production; and ε is the viscous dissipation of the turbulent kinetic energy. Since
the flow is axially homogeneous, there is balance between production and dissipation
in each cross-section; the transport terms just redistribute the kinetic energy in
the cross-sectional plane. By taking an average over the cross-section the equation
becomes

〈P〉A = 〈ε〉A; (5.2)

i.e. the average production in each cross-sectional plane is exactly balanced by the
average dissipation in that plane. This result is useful for estimating the dissipation
ε from the measured mass flux of salt. This enables us to estimate the Kolmogorov
microscale η and the Taylor microscale λ as

η = (ν3/ε)1/4,

λ =
(
15ν〈wrms〉2

A/ε
)1/2

,

}
(5.3)

from which we estimate the Taylor-microscale-based Reynolds number
Reλ = 〈wrms〉Aλ/ν.
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The equation for the Reynolds stresses is (Pope 2000);

∂k(Tkij ) = Pij + Rij − εij ; (5.4)

the transport term on the left side of the equation balances the production of the
stresses Pij , the redistribution due to pressure fluctuations Rij and the dissipation εij ,
on the right. The production is only due to buoyancy:

Pij = β(gi〈ujc〉 + gj 〈uic〉). (5.5)

Effect of the redistributive term is to isotropize the flow, in the central region, by
transferring energy from the axial to the lateral components through the collision
events, but near the wall, due to the imbalance in the structures, the energy transport
is in the reverse, from the lateral to the axial components, similar to the case of
shear-free wall-bound flows (Perot & Moin 1995).

The area-averaged equations for the normal stresses are given by

−2βg〈〈wc〉〉A + 2〈〈p′/ρ∂zw〉〉A = 〈εww〉A, (5.6)

2〈〈p′/ρ∂xu〉〉A = 〈εuu〉A, (5.7)

2〈〈p′/ρ∂yv〉〉
A

= 〈εvv〉A. (5.8)

The first equation shows that buoyancy production directly feeds into the axial
component of energy which is either dissipated or redistributed into the other
two components through the pressure velocity correlations. As 〈p′/ρ∂iui〉 = 0 from
continuity, (5.6)–(5.8) show that 〈p′/ρ∂zw〉 is a sink term for the vertical component
〈ww〉 of the energy and forms source terms for the lateral components 〈uu〉 and 〈vv〉.
A similar situation occurs in pressure-driven fully developed pipe flows; turbulent
kinetic energy is produced by shear production in the axial direction, which is
redistributed in the lateral direction (Monin & Yaglom 1971). Since the pressure
velocity correlations have an isotropizing effect, the lateral velocity components are
more isotropic than the axial velocity component, in the region away from the walls
as seen in figure 11. The sum of (5.6)–(5.8) gives (5.2), the area-averaged kinetic energy
equation.

Analogous to relations for R–B convection given in Chandrasekhar (1981), Siggia
(1994) and Grossmann & Lohse (2000), exact relations can be obtained between
Nusselt number and the dissipation of kinetic energy and between Nusselt number
and the dissipation of scalar variance for the present flow (Cholemari (2004). These
are

αK2Nug(
ΔC

L
)2 = 〈εc〉V (5.9)

and

ν3

d4
(Nug − 1)RagSc−2 = 〈ε〉V . (5.10)

Estimating the dissipation rates using the mixing length scales in (5.10) as gFm/ρ0,
we get

Nug − 1 = CmRa1/2
g Sc1/2. (5.11)

Neglecting 1 when compared to the large value of Nug , we recover (3.4). From this
we conclude that the mixing length scalings are consistent with the assumption of the
dissipation and production balance on an average, across the pipe (also see (5.2)).

The dissipative scale of the scalar fluctuations is also indicated by (5.9). Estimating
the dissipative scalar fluctuations to have a magnitude of βρm and taking their scale
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to be ,

 ∼ d√
Nug

∼ d
(
C2

mRagSc
)−1/4

. (5.12)

For the present configuration, at 20 min, for example (see table 1),  ∼ 90 μm. For
comparison, the Batchelor scale ∼ η/

√
Sc is approximately 18 μm. However, the scale

of scalar fluctuations at which the buoyancy effects manifest scales with d (3.1).
In all the above relations, Prandtl number (Pr) will replace Sc in the case of

convection caused by temperature difference.

5.2. Comparison with fully developed pipe flow

As opposed to the present flow in which the turbulence is sustained only by buoyancy
production shear flows have shear production as the only source of energy for
turbulence. In the wall-bound shear flows like fully developed pipe flows both the
effects of the wall – the kinematic blocking as well as shear – are present. One common
feature between the fully developed pipe flow and fully developed pipe convection
is axial homogeneity. The former is driven by a constant pressure gradient, and the
turbulence is sustained by shear; the latter is driven by a constant density gradient, and
the turbulence is sustained by buoyancy. The wall plays a dominant role in pressure-
driven pipe flow, where almost all the production of turbulent kinetic energy is near
the walls at which most of it is also dissipated. The rest of the turbulent kinetic energy
is transferred to the region away from the wall by turbulent diffusion. A similarity
with the pressure-driven pipe flow with pipe convection is that turbulence production
is only in the axial component of kinetic energy. The other two components obtain
the kinetic energy through the redistribution term. The direct numerical simulation
(DNS) study of two-dimensional channel flow of Kim, Moin & Moser (1987) (in which
Re =13750) gives at y+ = 11.8 the location of the peak production 〈u2〉/〈v2〉 ∼ 42.5
and at y+ = 98, in the log law region, 〈u2〉/〈v2〉 ∼ 2.6, while at the centreline, y+ = 395,
〈u2〉/〈v2〉 ∼ 1.47. Here u is the axial velocity, and v is the wall normal velocity. In
comparison the ratio on the centreline in pipe convection is about 2.4 and increases
to about 50 near the walls.

5.3. Comparison with R–B-type of convective flows

In R–B convection, as in the pipe convection, the production is mainly in the bulk,
but the dissipation is mainly near the walls. However, the crucial difference between
R–B convection and the pipe convection is the presence of the boundary layers near
the walls in R–B convection, which offer a large resistance to the heat transport. On
the other hand, in the pipe convection the open ends (where no boundary layers are
present) account for much-reduced end resistance. Lohse & Toschi (2003) simulated
R–B convection in infinitely tall cavities with constant density gradient, i.e. without
the boundary layers. They too observed the Nu ∼ Ra1/2 scaling. Thus the appearance
of Ra1/2 scaling appears to depend on the absence of the horizontal boundary layers,
or at least, on the boundary layers being independent of Rayleigh number effects.
The observations in the present flow as well as the proposed scalings based on the
diameter as the length scale are consistent with this view.

Vertical pipe convection has end regions with nonlinear gradients, which are
estimated to be about one diameter at each end (Cholemari 2004; Cholemari &
Arakeri 2005). Flow at these locations is developing and is still under the influence
of the exterior flow. (The largest eddy is in contact with the outer flow.) Thus in the
apparatus of Gibert et al. (2006), a fully developed flow is unlikely to develop. Some
evidence for this is seen in figure 2 of their paper. It is possible that the logarithmic
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dependence of L is caused by this scenario, where the scales of the flow within the
channel are likely to be affected by the flow outside the channel. And it might also
be necessary to use the temperature gradient and the magnitude of the temperature
fluctuations to derive a length scale.

In the present experiments, the pipe is sufficiently long to have a fully developed
flow (evident in figure 3) with a linear density gradient. Hence we believe the scaling
arguments given in § 3 are more appropriate for this flow. Further, note that the
density differences across the pipe are produced in bulk across the tanks containing
well-mixed fluids (no boundary layers in the tanks).

6. Summary and conclusion
We have studied a turbulent flow in a long vertical tube that is axially homogeneous,

and sustained purely by buoyancy. There is no mean flow and thus no mean shear,
and hence shear production of turbulence is absent. The flow is driven by a linear
unstable density gradient, much like the fully developed pipe flow that is driven by a
linear pressure gradient.

Experiments are consistent with a Nusselt number scaling of Nug ∼ Ra1/2
g Sc1/2,

implying a flux independent of molecular diffusivity and viscosity, and a Reynolds
number scaling of Re ∼ Ra1/2

g Sc−1/2. The flux and the velocity scales are predicted
by a mixing length model. Experiments covering a large range in Ra are required to
confirm the scaling and obtain the precise value of the exponent. Also it is required
to vary the Schmidt (or Prandtl) number to obtain its influence on the Nu and Re

scaling.
In the present study we have separated the bulk and the boundary layer effects

in a turbulent convection, by eliminating the boundary layers. The bulk mechanisms
cause the Nu ∼ Ra1/2 scaling. In the classical R–B convection, the interplay of the
bulk and the boundary layer results in the Nu ∼ Ra1/3 scaling. We conjecture that
this is brought about by whichever mechanism is less effective in transporting of the
scalar (the ‘bottleneck’). If the bulk mechanism is the bottleneck or if the boundary
layers do not exist, then the Nu ∼ Ra1/2 scaling appears. If the boundary layers are
the bottleneck, then the Nu ∼ Ra1/3 scaling prevails.

The convection essentially consists of rising and falling parcels of fluid continually
interacting amongst themselves and with the wall. The flow may be divided into three
regions (see figure 18). In the central zone the convection is essentially driven by
buoyancy. In a region covering about a sixth of the diameter from the wall, the flow
is affected both by buoyancy and, as in the case of shear-free wall-bound turbulence,
by kinematic blocking of the wall. The third region is the thin viscosity-affected region
in which the dissipation of turbulent kinetic energy may be large.

In the central zone, the large-scale motions scale with the pipe diameter. Spatial
correlations of axial velocity show extended regions in the vertical direction (figure 11).
There seem to be two dominant types of motion. One, indicated by velocity correlation
maps, is of the heavier parcels of fluid going down accompanied by lighter parcels
of fluid rising up on the sides, while the other, indicated by the PDFs of velocity
differences, is collision of vertically moving fluid parcels. In the near wall region, the
flow consists of ‘splat’ and ‘anti-splat’ events conjectured earlier (Perot & Moin 1995).
The production is solely by buoyancy in all regions. Near the axis of the pipe, the
ratio 〈w2〉/〈u2〉 involving the vertical and lateral velocities (w and u respectively) is
about 2. Near the walls, due to wall-blocking effects this ratio is much larger. The
velocity PDFs are Gaussian in the central zone.
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Some possible extensions of the present work are that, first, simultaneous
measurements of the velocity field and scalar field would give a direct measurement
of the turbulent flux 〈wc〉 term which is also directly proportional to the buoyancy
production term. These measurements could lead to better models for effects
of buoyancy on turbulence. DNS studies of the present turbulent flow with its
axially homogeneous region would complement the understanding gained from the
experiments. Experiments with a higher Reλ would enable us to test the scalings over
a wider range of parameters.

We believe the features of axial homogeneity or full development, no mean flow and
thus turbulent production just by buoyancy, and the Nu ∼ Ra1/2Sc1/2 scaling makes
this flow useful for fundamental studies of buoyancy-driven turbulence. The absence
of the bottom and top walls makes the crucial difference between pipe convection
and R–B convection; the top and bottom walls (and the associated boundary layers)
offer most of the resistance to heat flux. This resistance is removed in pipe convection.
In particular, much higher fluxes and Reynolds numbers are obtained in the present
flow than in R–B for the same driving density difference.

The authors thank Professor K. R. Sreenivasan for his valuable advice on the
manuscript.

Appendix A. Velocity measurement
Two configurations were used to evaluate the PIV process: in the first, set a, the

area imaged was a 50 mm × 50 mm region at the centre of the pipe, while in the
second (set b) the area imaged was reduced to half the earlier value. Two hundred and
twenty-two data sets consisting of 250 frames, each recorded a second apart, from
19 different experiments were obtained in set a, while the corresponding numbers
were 96, 250 and 8 for set b. The images were interrogated with windows of size
322 px, yielding a spatial resolution of 4η and 2η for sets a and b respectively. Each
frame had 632 vectors. In all the cases, the particle image diameter was close to
2 px, which is recommended to minimize the overall error of uncertainty (Raffel et al.
1998; Prasad 2000). The analysis in this paper was just with the set a data, with the
zoomed data being used only for the validation of the process.

The PIV images were evaluated in two stages, first with a coarse grid with 642

windows and then in a fine grid with 322 windows. In this stage, one or more passes
were done with incremental window offset equal to the local average displacement,
till the evaluated displacement was less than 1 px. This approach minimized the
measurement uncertainty as well as improved the detectability of the correlation peak
by increasing the number of particle matches (Keane & Adrian 1992; Westerweel 1997;
Westerweel, Dabiri & Gharib 1997; Raffel et al. 1998; Prasad 2000). Using Gaussian
sub-pixel estimator to estimate the displacements to within a pixel minimized the peak-
locking errors. We also corrected any remaining peak locking by using a model for the
error (Cholemari 2007). We minimized the errors arising due to out-of-plane motion
of particles aliased as in-plane motions, the so-called perspective errors, by imaging
the flow from as far away as possible (2 m in set a and 1.5 m in set b). We tested
the algorithm by using synthetic rotation and translation of experimental images and
using an image sequence of a particle pattern moved through known distances using
a traverse, as well as with the standard images provided by the Japanese Visualization
Society (JVS). In the first two cases, the average r.m.s. uncertainty was less than 0.05 px.
With the JVS images with particles of 5 px diameter (the smallest provided), the
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Figure 19. Comparison of r.m.s. velocity profiles obtained from set a (resolution Δη =4)
and set b (resolution Δη =2) experiments. The data from the zoomed experiments are yet to
converge at the large scales.

r.m.s. uncertainty was 0.15 px, which compares favourably with the reported value of
0.3 px in Raffel et al. (1998). The reported value of r.m.s. uncertainty for particles of
2 px diameter is 0.07 px in Raffel et al. (1998), and hence we estimate the error to
be at most about 0.05 px in our case. An r.m.s. uncertainty of 0.05 px translates to
0.3 mm s−1 in the measurements. However, it is to be noted this value of uncertainty
is relevant only in case of measurements of r.m.s. velocity. The correlation maps and
the PDFs have much smaller residual r.m.s. error due to the process of averaging.
The systematic peak-locking error, typically of a magnitude of 0.02 px, is far larger
than the residual random errors. However, the peak-locking error is also corrected
(see figure 20). Additional details can be found in Cholemari (2007).

However, the technique of PIV itself would incur errors such as filtering effect of
a limited spatial resolution, behaviour of tracer particles in following the flow and
non-uniformity of optics. We ensured that the optical irregularities were minimal by
recording a grid of 1 mm2 square pattern, placed within the setup with the fluids
present. Even near the edges of the image, the irregularities could not be detected
within a pixel. Further, the free fall velocity of the particles was 26 μm s−1, about
two orders of magnitude smaller than the average r.m.s. velocities. We discuss the
effects of the limitation of the spatial resolution below and ensure that the effects are
not significant for the present purposes by comparing statistics from measurements
at two different resolutions.

The effect of the spatial resolution on turbulence statistics varies depending on
the variable considered (Saarenrinne & Piirto 2000; Saarenrinne, Piirto & Eloranta
2001). Saarenrinne et al. (2001) assume that filtering eliminates ‘all’ the energy below
the resolved scale. By looking at typical turbulence spectra, they conclude that the
r.m.s. velocities are resolved to within 5% when Δ/η ∼ 20. In synthetic PIV images
of Lecordier et al. (2001), the error is about 7% for Δ/η ∼ 11. In case of Hyun
et al. (2003), for Δ/η ∼ 25, the error is about 15%, even in a high-shear zone. In our
case the main measurements are with Δ/η ∼ 4, and the fine measurements are with
Δ/η ∼ 2, and hence we can assume that the r.m.s. values are resolved to better than
5%.

When we consider the PDFs, we are looking at individual measurements and not
averages. (Although, after binning, the PDFs of various data sets themselves are
averaged.) Each of the measurements is potentially underestimated by the filtering
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Figure 20. Correction of peak-locking errors. Data are a set of 250 velocity frames, from
set a (resolution Δ/η = 4). The amplitude of correction is 0.023 px. The model error used to
correct the data is also shown.
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Figure 21. Comparison of velocity PDFs for set a and set b. The zoomed experiment data
are shown using thin lines. The dots are the Gaussian curve.

of the small scales. Since the velocities at the small scales are small compared to the
energy-containing scales, similar errors accrue as in the case of r.m.s. measurements.
However, it could happen that, locally and instantaneously, the small scales have large
velocities, and if the resolution is insufficient, these might not be resolved. We cannot
determine this effect a priori, but by comparing the PDFs of the velocity differences
(see figure 22) at the small separations (focusing on the small scales) of δ/η ∼ 4 and
δ/η ∼ 8, we see that there is no significant difference between the measurements at
a resolution of Δ/η ∼ 4 and the finer resolution measurements at Δ/η ∼ 2. And we
conclude that errors due the spatial resolution in the PDF measurements are not
significant.

Errors in the mean values and the correlations due to the filtering effect are again
similar to those in case of the r.m.s.

Saarenrinne & Piirto (2000) estimated that the error in the measurement of
dissipation ε is about 10% at Δ/η ∼ 2 and about 35% at Δ/η ∼ 7.5. For our
measurements (with Δ/η ∼ 4) this error is about 20%, and hence the gradients
accrue an error of about 10%.
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Figure 22. Comparison of the PDFs of velocity differences for resolutions Δ/η = 4 and 2.
Data from only the middle third of the pipe are considered. (a) Δz/η = 4; (b) Δz/η = 8.

Figure 19 shows the profiles of the r.m.s. values of the axial and lateral velocities
for set a. Also shown using thin lines are the corresponding values for set b. We
ensured that the r.m.s. data for set a had converged. However, for set b they have
not converged but are within 5% of the converged profiles. The large number of
frames are required because of the large correlation times (around 10 s), and hence
large scales (corresponding to the large time scales) require more number of frames.
Further, as seen in figure 11, the lateral extent of the correlated region of the axial
velocity is less than, and the axial extent of correlation is more than, those of lateral
velocity (thus less number of independent data points when averaged axially and
hence requires a larger data set). Convergence for urms profile from set b in figure 19
is much better compared to that for the wrms profile. Figure 20 shows a velocity
histogram for a 250 s period, before and after correction for peak locking, showing
the peak locking is corrected well. It is to be noted that the magnitude of the
correction was only about 0.02 px, but the systematic error causes a large effect on
the PDFs (Christensen 2004). Also, the symmetry at small values shows that the
particle buoyancy does not significantly affect the measurements. Figure 21 shows
the PDFs of velocity for data sets a and b. It is seen that the PDFs agree well at
small velocities, though the agreement becomes poorer at larger velocities. However,
in figure 22, the PDFs of velocity differences again agree very well. This is because
the data corresponding to large scales (and large velocities) have not yet converged
(see figure 19) for the zoomed data, but the data for velocity differences at smaller
scales in figure 22 have converged. We judged the deviation between the zoomed and
the whole pipe data in figures 19 and 21 was due to lack of convergence at the large
scales in the zoomed data.

We thus conclude that, for the purposes of this study, the PIV implementation is
adequate.

Appendix B. Axial homogeneity
If the pipe is long enough, away from the ends of the pipe the flow is expected

to be axially homogeneous or fully developed, with the statistics of the flow and in
particular the various averages having no dependence on z, the axial coordinate. An
analogous axially homogeneous situation is obtained in a fully developed pressure-
driven pipe flow. We now show these factors imply a linear variation in the axial (z)
direction of the mean concentration. Further the mean concentration C can be shown
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to be a constant across the cross-section of the pipe. We assume that the flow is fully
developed; the mean flow is zero; and the Reynolds shear stresses are zero.

With the quasi-stationary assumption the mean scalar balance is

α∂2
j C − ∂j 〈ujc〉 = 0, (B 1)

where α is the salt diffusivity; c̃ = C + c is the salt concentration (ρ − ρ0)/βρ0 with
ρ0 being the density of water. Capitalized variables and angular brackets indicate
the ensemble means, and the lower case letters indicate the fluctuations from the
mean. The mean velocities Ui are zero, and no assumption need be made on the full
development of concentration C.

Applying the divergence theorem to (B 1) and noting that the velocities and the
wall normal gradients of concentration are zero at the walls, we get∫

A

(−α∂2
z C + ∂z〈wc〉)dA = 0, (B 2)

and since full development implies ∂z〈wc〉 =0, we get
∫

A
∂2

z CdA=0.
We will next show that 〈ρ〉 and thus C are constant across the cross-section. We

consider the axial momentum equation in the fully developed region of the pipe. The
axial momentum equation (with the Boussinesq approximation) is

∂W

∂t
+ U

∂W

∂x
+ V

∂W

∂y
+ W

∂W

∂z
= − 1

ρ0

∂P

∂z

+ ν∇2W − ∂〈uw〉
∂x

− ∂〈vw〉
∂y

− ∂〈ww〉
∂z

− ρ∗

ρ0

g. (B 3)

With the quasi-steady and fully developed flow with no mean velocity (∂z〈·〉 = 0,
U = 0, V = 0 and W = 0), the left-hand side is zero. Because of full development
∂z〈ww〉 =0. The Reynolds shear stresses are zero: 〈uw〉 =0 and 〈vw〉 = 0. Since
the concentration profile is fully developed, we write ρ∗(x, y, z) = ρA(z) + δρ(x, y),
where ρA = 1/AP

∫
A

〈ρ〉dA is the average density over the pipe cross-section AP . The
deviation from the cross-section average δρ is just a function of (x, y) as is required by
full development. (Note that this is an ensemble average value and not the turbulent
density fluctuation.) Thus the axial momentum equation becomes[

− ∂P

∂z
− ρAg

]
− δρ g = 0. (B 4)

Consider the lateral momentum equations, the x equation, for example:

DU

Dt
= 0 = − 1

ρ0

∂P

∂x
+ ν∇2U − ∂x〈uu〉 − ∂y〈uv〉 − ∂z〈uw〉. (B 5)

Since U is zero, the advective and the viscous terms are zero; 〈uv〉 =0, as the flow
is mean shear free, and ∂z〈uw〉 = 0 because of full development (follows by the shear
free nature of the flow as well). Thus ∂P/∂x = ρ0∂x〈uu〉. Integrating from the wall,
we get

P = ρ0〈uu〉 + Pw(y, z), (B 6)

where Pw is the pressure at the wall and is constant in x. Differentiating this with
respect to z we get

∂P

∂z
=

∂Pw(z, y)

∂z
+ ρ0∂z〈uu〉. (B 7)
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The last term is zero because of full development, and so ∂P/∂z is not a function
of x – and by symmetry not a function of y as well. The terms in the square
brackets in (B 4) are just functions of z and therefore must separately balance;
[−(1/ρ0)(∂P/∂z)−ρAg] = 0. Therefore δρ = 0 (from (B 4)), and the mean concentration
across the pipe is constant, C = C(z) = ρA/(βρ0). From this and (B 2) ∂zC is seen to
be constant; i.e. a fully developed flow implies the mean concentration varies linearly
along z. Further, (B 4) implies that the mean pressure varies quadratically with z.

The existence of a linear concentration gradient was experimentally verified. An
experiment was done using a pipe of 50 mm diameter and AR = 10, with potassium
permanganate at about 200 p.p.m. initially in the top tank, in addition to the salt.
During the experiment, the pipe was illuminated from using an overhead projector
and the light after passing through the flow was made to fall on a translucent
screen. This image was recorded using a video camera and digitized. The difference
in the intensity between an experimental image and a calibration image with no
dye gives the amount of light absorbed due to the dye. We ensured, by means of a
separate calibration, that the amount of light absorbed varied linearly with the dye
concentration at the small concentrations involved. The average result of a number of
frames over a couple of minutes, averaged across a region spanning about a third of
the pipe cross-section near the axis of the pipe, was taken as the mean concentration
in the pipe. The advantage of averaging is that not just the concentration fluctuations
but also the ensuing refractive index variations get averaged out. Figure 3 shows the
results of the experiments. It is seen that the concentration variation is fairly linear in
the range measured, i.e. about two diameters from either end. From the plot we see
that the number of data points is not sufficient for a converged concentration profile.
Due to experimental constraints we could not measure the concentration profiles till
the ends of the pipe. However, in the present flow, the developmental region at either
end is short, about one diameter, much smaller compared to the case of pressure
driven pipe flow (Cholemari & Arakeri (2005)).
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